Advanced search
Wan Lu, Guo lisha, Kang Jialing. The Interaction of Sustainable Trade, Green Technological Progress and the Upgrading of the Global Innovation Chain: Based on Data from Multinational and Multi-industry in the Context of Carbon Neutrality[J]. Journal of Beijing Forestry University (Social Science), 2022, 21(1): 77-85. DOI: 10.13931/j.cnki.bjfuss.2021291
Citation: Wan Lu, Guo lisha, Kang Jialing. The Interaction of Sustainable Trade, Green Technological Progress and the Upgrading of the Global Innovation Chain: Based on Data from Multinational and Multi-industry in the Context of Carbon Neutrality[J]. Journal of Beijing Forestry University (Social Science), 2022, 21(1): 77-85. DOI: 10.13931/j.cnki.bjfuss.2021291

The Interaction of Sustainable Trade, Green Technological Progress and the Upgrading of the Global Innovation Chain: Based on Data from Multinational and Multi-industry in the Context of Carbon Neutrality

More Information
  • Received Date: October 19, 2021
  • Accepted Date: February 06, 2022
  • Available Online: February 14, 2022
  • Published Date: April 01, 2022
  • Affected by the global COVID-19 pandemic and unilateral trade protectionism, sustainable trade, which is closely related to economic development has become the focus of attention everywhere. Taking 32 representative countries and regions in the world economy as examples, according to their relevant panel data from 1995 to 2018, based on the non-radial three-stage SBM-DEA model, combined with the Malmquist index, this paper measures innovation efficiency, and analyzes its relationship with the impact of green technology progress on sustainable trade. The spatial Durbin model is adopted for regression analysis and effect decomposition. In terms of interaction, combined with the results of the spatial Dobin and error models, the Bootstrap mediation effect was comprehensively considered for analysis. The result shows that the progress of green technology not only promotes the sustainable trade development of a single country, but also has a positive spillover effect on surrounding areas or areas with similar economic development levels. The effect of green technological progress on sustainable trade is positively affected by innovation efficiency.
  • [1]
    马琳,吴金希. 全球创新网络相关理论回顾及研究前瞻[J]. 自然辩证法研究,2011,27(1):109-114.
    [2]
    张战仁,李一莉. 全球创新价值链模式的国际研发投资转移研究[J]. 科学学研究,2015,33(10):1487-1495. doi: 10.3969/j.issn.1003-2053.2015.10.007
    [3]
    林学军. 全球创新链视角下建设创新型国家战略研究[J]. 东南学术,2018(4):132-140.
    [4]
    彭静,顾国达. 区域对外贸易可持续发展指标体系研究−基于浙江省的实证分析[J]. 商业经济与管理,2010(12):46-50. doi: 10.3969/j.issn.1000-2154.2010.12.007
    [5]
    SHAHBAZ M,NASIR M A,ROUBAUD D. Environmental degradation in France:the effects of FDI,financial development,and energy innovations[J]. Energy Economics,2018,74:843-857. doi: 10.1016/j.eneco.2018.07.020
    [6]
    张军. 技术创新与中国对外贸易可持续发展关系研究[J]. 企业经济,2007(8):15-17. doi: 10.3969/j.issn.1006-5024.2007.08.004
    [7]
    邢孝兵,徐洁香,李子怡. 出口商品结构对全球技术创新空间差异的影响研究[J]. 财贸研究,2018,29(8):39-48.
    [8]
    WALZ R,PFAFF M,MARSCHEIDER-WEIDEMANN F,et al. Innovations for reaching the green sustainable development goals–where will they come from?[J]. International Economics and Economic Policy,2017,14(3):449-480. doi: 10.1007/s10368-017-0386-2
    [9]
    孙瑾,丁冉,王杰镭. 关于可持续贸易的研究进展[J]. 经济学动态,2020(8):131-145.
    [10]
    黄小敬,李娆,廖文龙,等. 我国各省份创新质量与绿色增长效率分析−基于超效率SBM-DDF模型的省级专利面板数据[J]. 改革与战略,2021,37(4):117-124.
    [11]
    宋晓玲,李金叶. 双向FDI协调发展是否促进了绿色经济效率增长−基于技术创新视角[J]. 国际商务(对外经济贸易大学学报),2021(2):126-140.
    [12]
    于惊涛,杨大力. 政府投入、经济自由度与创新效率:来自24个领先国家的实证经验[J]. 中国软科学,2018(7):181-192. doi: 10.3969/j.issn.1002-9753.2018.07.016
    [13]
    彭亮,刘国城. “一带一路”下西北地区上市公司投资效率研究−基于DEA-Malmquist指数法[J]. 投资研究,2018,37(12):45-57.
    [14]
    张建清,卜书迪. 基于三阶段SBM-DEA的区域绿色科技资源优化配置效率测度−以桂林市为例[J]. 资源开发与市场,2017,33(1):1-7. doi: 10.3969/j.issn.1005-8141.2017.01.001
    [15]
    官建成,何颖. 基于DEA方法的区域创新系统的评价[J]. 科学学研究,2005(2):265-272. doi: 10.3969/j.issn.1003-2053.2005.02.022
    [16]
    易继承,张璐. 基于三阶段DEA模型的创新型国家创新效率测度[J]. 统计与决策,2021,37(8):81-85.
    [17]
    陈升, 扶雪琴. “一带一路”沿线科技创新效率区域差异及影响因素分析−基于三阶段DEA和Tobit模型[J]. 重庆大学学报(社会科学版), 2022(1): 154-169.
    [18]
    HEAD K,MAYER T. The empirics of agglomeration and trade[J]. Handbook of Regional and Urban Economics,2004,4:2609-2669.
    [19]
    ATKINSON A,MESSY F-A. Measuring financial literacy:results of the OECD/International Network on Financial Education (INFE) pilot study[J]. OECD Working Papers on Finance,Insurance and Private Pensions,2012,15:1-73.
    [20]
    董直庆,王辉. 环境规制的“本地-邻地”绿色技术进步效应[J]. 中国工业经济,2019(1):100-118.
    [21]
    余典范,干春晖,郑若谷. 中国产业结构的关联特征分析−基于投入产出结构分解技术的实证研究[J]. 中国工业经济,2011(11):5-15.
    [22]
    THEIL H,URIBE P. The information approach to the aggregation of input-output tables[J]. The Review of Economics and Statistics,1967,49(4):451-462.
    [23]
    LING C H,AHMED K,MUHAMAD R B,et al. Decomposing the trade-environment nexus for Malaysia:what do the technique,scale,composition,and comparative advantage effect indicate?[J]. Environmental Science and Pollution Research,2015,22(24):20131-20142. doi: 10.1007/s11356-015-5217-9
    [24]
    易行健,左雅莉. 外贸依存度的国际比较与决定因素分析−基于跨国面板数据的实证检验[J]. 国际经贸探索,2016,32(9):25-39.
    [25]
    杨云母,王素玉. 后金融危机时代世界市场转型与人才竞争[J]. 当代经济研究,2009(11):40-44.
    [26]
    宁译萱,尹勇,李琼. 基于空间杜宾模型的中国省际雾霾污染影响因素分析[J]. 现代商贸工业,2020,41(26):44-46.
    [27]
    ANSELIN L. Spatial effects in econometric practice in environmental and resource economics[J]. American Journal of Agricultural Economics,2001,83(3):705-710. doi: 10.1111/0002-9092.00194
    [28]
    LESAGE J, PACE R K. Introduction to spatial econometrics[M]. New York: Chapman and Hall/CRC, 2009.
    [29]
    丁日佳,张诗悦. 进口贸易、技术溢出的环境效应与工业大气污染−基于省级面板数据的中介路径分析[J]. 北京理工大学学报(社会科学版),2021,23(3):22-37.
    [30]
    杨世迪,韩先锋,宋文飞. 对外直接投资影响了中国绿色全要素生产率吗[J]. 山西财经大学学报,2017,39(4):14-26.
    [31]
    聂名华,齐昊. 对外直接投资能否提升中国工业绿色创新效率?:基于创新价值链与空间关联的视角[J]. 世界经济研究,2019(2):111-122,137.
    [32]
    邵帅,李宝礼. 农村劳动力转移如何影响农村环境污染?−基于空间面板模型的实证考察[J]. 中国地质大学学报(社会科学版),2020,20(1):39-55.

Catalog

    Article views (770) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return