Citation: | Zhang Zixuan, Zhang Ying, Sun Jianfeng, Meng Na. Research Progress and Prospect of Forest Carbon Sink Measurement[J]. Journal of Beijing Forestry University (Social Science), 2024, 23(4): 52-61. DOI: 10.13931/j.cnki.bjfuss.2023095 |
With the help of the Citespace bibliometric tool, this study comprehensively and systematically analyzes the research on forest carbon sink measurement at home and abroad, compares its development and stages, summarizes the development rules and characteristics, and provides an outlook on the future development direction of forest carbon sink measurement, aming to provide reference for future research on forest carbon sink measurement and economic value accounting. The main conclusions are: ① We should continue to pay attention to and improve the estimation system and value accounting system of forest carbon sinks, and enrich the content of forest carbon sink measurement research. ② The estimation methods of forest carbon sinks at home and abroad are continuously optimized and improved, and China needs to accelerate the application and promotion of advanced methods such as machine learning algorithms and remote sensing technology, so as to promote the innovation of forest carbon sink measurement methods. ③ Research on forest carbon sink measurement involves many disciplines, and it is necessary to accelerate the cross-fertilization of methods from many disciplines. ④ China needs to strengthen the cooperation with scholars from different institutions in different countries to further promote the innovation and development of forest carbon sink measurement research.
[1] |
刘国华,傅伯杰,方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报,2000(5):733-740.
|
[2] |
何炯英,刘梅娟,李婷. 森林碳汇会计核算研究的回顾与展望[J]. 林业经济问题,2021,41(5):552-560.
|
[3] |
周健,肖荣波,庄长伟,等. 城市森林碳汇及其核算方法研究进展[J]. 生态学杂志,2013,32(12):3368-3377.
|
[4] |
曹先磊,张颖,石小亮,等. 碳交易视角下森林碳汇生态补偿优化管理研究进展[J]. 资源开发与市场,2017,33(4):430-435.
|
[5] |
ERB K H,KASTNER T,PLUTZAR C,et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass[J]. Nature,2018,553(7686):73-76. doi: 10.1038/nature25138
|
[6] |
BAI Y,WONG C P,JIANG B,et al. Developing China's ecological redline policy using ecosystem services assessments for land use planning[J]. Nature Communications,2018,9(1):3034. doi: 10.1038/s41467-018-05306-1
|
[7] |
DUFFY K A,SCHWALM C R,ARCUS V L,et al. How close are we to the temperature tipping point of the terrestrial biosphere?[J]. Science Advances,2021,7(3):eaay1052. doi: 10.1126/sciadv.aay1052
|
[8] |
LI Y,PIAO S,LI L Z X,et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China[J]. Science Advances,2018,4(5):eaar4182. doi: 10.1126/sciadv.aar4182
|
[9] |
LIU X,YANG T,WANG Q,et al. Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions:a meta-analysis[J]. Science of The Total Environment,2018,618:1658-1664. doi: 10.1016/j.scitotenv.2017.10.009
|
[10] |
O'ROURKE S M,ANGERS D A,HOLDEN N M,et al. Soil organic carbon across scales[J]. Global Change Biology,2015,21(10):3561-3574. doi: 10.1111/gcb.12959
|
[11] |
CRAUSBAY S D,RAMIREZ A R,CARTER S L,et al. Defining ecological drought for the twenty-first century[J]. Bulletin of the American Meteorological Society,2017,98(12):2543-2550. doi: 10.1175/BAMS-D-16-0292.1
|
[12] |
BACCINI A,GOETZ S J,WALKER W S,et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps[J]. Nature Climate Change,2012,2(3):182-185. doi: 10.1038/nclimate1354
|
[13] |
PIAO S,FANG J,CIAIS P,et al. The carbon balance of terrestrial ecosystems in China[J]. Nature,2009,458(7241):1009-1013. doi: 10.1038/nature07944
|
[14] |
DE SY V,HEROLD M,ACHARD F,et al. Tropical deforestation drivers and associated carbon emission factors derived from remote sensing data[J]. Environmental Research Letters,2019,14(9):094022. doi: 10.1088/1748-9326/ab3dc6
|
[15] |
SENF C,PFLUGMACHER D,YANG Z,et al. Canopy mortality has doubled in Europe's temperate forests over the last three decades[J]. Nature Communications,2018,9(1):4978. doi: 10.1038/s41467-018-07539-6
|
[16] |
HE C,ZHANG D,HUANG Q,et al. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and invest models[J]. Environmental Modelling & Software,2016,75:44-58.
|
[17] |
DONG L. Developing alternative forest spatial management plans when carbon and timber values are considered:a real case from northeastern China[J]. Ecological Modelling, 2018, 385:45-57.
|
[18] |
DING Q,CHEN Y,BU L,et al. Multi-scenario analysis of habitat quality in the Yellow River Delta by coupling flus with invest model[J]. International Journal of Environmental Research and Public Health,2021,18(5):2389. doi: 10.3390/ijerph18052389
|
[19] |
PUGH T A M,LINDESKOG M,SMITH B,et al. Role of forest regrowth in global carbon sink dynamics[J]. Proceedings of the National Academy of Sciences,2019,116(10):4382-4387. doi: 10.1073/pnas.1810512116
|
[20] |
WEI Y,LI M,CHEN H,et al. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in Northeastern China[J]. PLoS ONE,2013,8(8):e72201. doi: 10.1371/journal.pone.0072201
|
[21] |
BORTOLOT Z J,WYNNE R H. Estimating forest biomass using small footprint lidar data:an individual tree-based approach that incorporates training data[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2005,59(6):342-360. doi: 10.1016/j.isprsjprs.2005.07.001
|
[22] |
JANDL R,LINDNER M,VESTERDAL L,et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma,2007,137(3):253-268.
|
[23] |
BATLLORI E,LIORET F,AAKALA T,et al. Forest and woodland replacement patterns following drought-related mortality[J]. Proceedings of the National Academy of Sciences,2020,117(47):29720-29729. doi: 10.1073/pnas.2002314117
|
[24] |
CAO S,XU C,CHEN L,et al. Attitudes of farmers in China's northern Shaanxi Province towards the land-use changes required under the grain for green project,and implications for the project's success[J]. Land Use Policy,2009,26(4):1182-1194. doi: 10.1016/j.landusepol.2009.02.006
|
[25] |
NELSON R F,HYDE P,JOHNSON P,et al. Investigating radar–lidar synergy in a north carolina pine forest[J]. Remote Sensing of Environment,2007,110(1):98-108. doi: 10.1016/j.rse.2007.02.006
|
[26] |
TURNER P A,FIELD C B,LOBELL D B,et al. Unprecedented rates of land-use transformation in modelled climate change mitigation pathways[J]. Nature Sustainability,2018,1(5):240-245. doi: 10.1038/s41893-018-0063-7
|
[27] |
PAN Y,BIRDSEY R A,FANG J,et al. A large and persistent carbon sink in the world's forests[J]. Science,2011,333(6045):988-993. doi: 10.1126/science.1201609
|
[28] |
GRISCOM B W,ADAMS J,ELLIS P W,et al. Natural climate solutions[J]. Proceedings of the National Academy of Sciences,2017,114(44):11645-11650. doi: 10.1073/pnas.1710465114
|
[29] |
HANSEN M C,POTAPOV P V,MOORE R,et al. High-resolution global maps of 21st-century forest cover change[J]. Science,2013,342(6160):850-853. doi: 10.1126/science.1244693
|
[30] |
赵海珍,王德艺,张景兰,等. 雾灵山自然保护区森林的碳汇功能评价[J]. 河北农业大学学报,2001(4):43-47.
|
[31] |
王效科,冯宗炜,欧阳志云. 中国森林生态系统的植物碳储量和碳密度研究[J]. 应用生态学报,2001(1):13-16.
|
[32] |
张德全,桑卫国,李曰峰,等. 山东省森林有机碳储量及其动态的研究[J]. 植物生态学报,2002(S1):93-97.
|
[33] |
丁圣彦,梁国付. 近20年来洛宁县森林植被碳储量及动态变化[J]. 资源科学,2004(3):105-108.
|
[34] |
赵敏,丁慧勇,高峻. 城市森林固定CO2价值评估[J]. 生态经济,2007(8):143-145. doi: 10.3969/j.issn.1671-4407.2007.08.032
|
[35] |
张颖,周雪,覃庆锋,等. 中国森林碳汇价值核算研究[J]. 北京林业大学学报,2013,35(6):124-131.
|
[36] |
陈刚. 我国森林碳汇经济价值评估研究[J]. 价格理论与实践,2015(5):109-111.
|
[37] |
叶金盛,佘光辉. 广东省森林植被碳储量动态研究[J]. 南京林业大学学报(自然科学版),2010,34(4):7-12.
|
[38] |
卢航,刘康,吴金鸿. 青海省近20年森林植被碳储量变化及其现状分析[J]. 长江流域资源与环境,2013,22(10):1333-1338.
|
[39] |
陈耀亮,罗格平,叶辉,等. 1975—2005年中亚土地利用/覆被变化对森林生态系统碳储量的影响[J]. 自然资源学报,2015,30(3):397-408.
|
[40] |
张骏,袁位高,葛滢,等. 浙江省生态公益林碳储量和固碳现状及潜力[J]. 生态学报,2010,30(14):3839-3848.
|
[41] |
姜霞,黄祖辉. 经济新常态下中国林业碳汇潜力分析[J]. 中国农村经济,2016(11):57-67.
|
[42] |
姚平,陈先刚,周永锋,等. 西南地区退耕还林工程主要林分50年碳汇潜力[J]. 生态学报,2014,34(11):3025-3037.
|
[43] |
李晓曼,康文星. 广州市城市森林生态系统碳汇功能研究[J]. 中南林业科技大学学报,2008(1):8-13.
|
[44] |
王祖华,刘红梅,关庆伟,等. 南京城市森林生态系统的碳储量和碳密度[J]. 南京林业大学学报(自然科学版),2011,35(4):18-22.
|
[45] |
宁晓波,刘隆德,李明刚,等. 喀斯特城市主要森林生物量及碳吸存功能[J]. 中南林业科技大学学报,2013,33(11):109-114.
|
[46] |
王光华,刘琪璟. 基于TM影像和森林资源二类调查数据的北京森林碳汇估算[J]. 应用基础与工程科学学报,2013,21(2):224-235.
|
[47] |
曹林,佘光辉,代劲松,等. 激光雷达技术估测森林生物量的研究现状及展望[J]. 南京林业大学学报(自然科学版),2013,37(3):163-169.
|
[48] |
郭含茹,张茂震,徐丽华,等. 不同采样密度下县域森林碳储量仿真估计[J]. 生态学报,2016,36(14):4373-4385.
|
[49] |
肖卓勇,陈国建,张超,等. 重庆市人均森林碳储量与碳汇林造林树种选择[J]. 资源开发与市场,2017,33(3):307-310,321.
|
[50] |
林雯,李聪颖,周平. 广州城市森林六种典型林分碳积累研究[J]. 生态科学,2019,38(6):74-80.
|
[51] |
施健健,蔡建国,刘朋朋,等. 杭州花港观鱼公园森林固碳效益评估[J]. 浙江农林大学学报,2018,35(5):829-835.
|
[52] |
张煜星,王雪军. 全国森林蓄积生物量模型建立和碳变化研究[J]. 中国科学:生命科学,2021,51(2):199-214.
|
[53] |
尹晶萍,张煜星,付尧,等. 中国碳排放与森林植被碳吸收潜力研究[J]. 林业资源管理,2021(3):53-61.
|
[54] |
杜之利,苏彤,葛佳敏,等. 碳中和背景下的森林碳汇及其空间溢出效应[J]. 经济研究,2021,56(12):187-202.
|
[55] |
张颖,李晓格,温亚利. 碳达峰碳中和背景下中国森林碳汇潜力分析研究[J]. 北京林业大学学报,2022,44(1):38-47.
|
[56] |
付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测[J]. 林业科学,2022,58(2):32-41.
|
[57] |
徐晋涛,易媛媛. “双碳”目标与基于自然的解决方案:森林碳汇的潜力和政策需求[J]. 农业经济问题,2022(9):11-23.
|
[58] |
张娟,陈钦. 森林碳汇经济价值评估研究:以福建省为例[J]. 西南大学学报(自然科学版),2021,43(5):121-128.
|
[59] |
胡峻嶍,黄访,铁烈华,等. 四川省森林植被固碳经济价值动态[J]. 生态学报,2019,39(1):158-163.
|
[60] |
曹扬,陈云明,渠美. 陕西省森林碳储量、生产力及固碳释氧经济价值的动态变化[J]. 西北农林科技大学学报(自然科学版),2013,41(5):113-120.
|
[61] |
侯芳,王克勤,宋娅丽,等. 滇中亚高山典型森林生态系统碳储量及其分配特征[J]. 生态环境学报,2018,27(10):1825-1835.
|
[62] |
李茜,王芳,曹扬,等. 陕西省森林土壤固碳特征及其影响因素[J]. 植物生态学报,2017,41(9):953-963.
|
[63] |
孙清芳,贾立明,刘玉龙,等. 中国森林植被与土壤碳储量估算研究进展[J]. 环境化学,2016,35(8):1741-1744.
|
[64] |
武慧君,姚有如,苗雨青,等. 芜湖市城市森林土壤理化性质及碳库研究[J]. 土壤通报,2018,49(5):1015-1023.
|